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Azepane rings are present in a number of biologically interesting ~ Conversion of este to the amide$ and 962 followed by acid
molecules and are homologues of the five- and six-membered hydrolysis of the enamide to the aldehyde and subsequent cycliza-
nitrogen heterocycles which have been extensively developed astion provided the correspondini-alkyl lactams7 and 10, as
core pharmacophores. Methodology for the asymmetric synthesisshown in Scheme 2Reductive conversions afand10 to 8 and
of polysubstituted azepanes has not been developed. Syntheses df1 were accompanied by debrominations of the aromatic &ing.
enantioenriched azepane rings have been reported coincident to the
preparations of specific compounds of biological interest, but Scheme 2
general approaches, particularly for substitutions nonadjacent to the {
nitrogen atom, have not been availabié.

We now wish to report lithiatioraddition methodology for the Ay ¥ EHa
asymmetric synthesis of both enantiomers of 4,5,6 and 3,4,5,6 N ;\;c *('3‘:2‘3’) i_p 8 65(%)

o7 N

MeAl
_Ar RNHp

q —
Boc CH,Cl» Ar

carbon-substituted azepanes. The key step in our approach is a™ CouEt 5 ¥
highly diastereoselective and enantioselective conjugate addition (r=peromophenyt) \ﬂ, j\_p
of a lithiated N-Boc-2,3-substituted allylamine to f@-aryl o,(- 3 6:R= CH3 81%) 7:R=CHy  720%) N
unsaturated ester, which is shown as the first step in the retrosyn- SEREPRCHZ 06 10:R=PhCH, 75C4) B
thetic analysis of Scheme 1. o0
Scheme 1 Efficient syntheses of 4,5,6-substituted azepanes are shown in
]2 Scheme 3. Enantioenrichel] 2, and 3 were converted to the
R1\)\I corresponding 4,5,6-substitutddBoc azepanet6, 21, and26in
Ré. b, b‘ i—) ,<\‘ L N high yields via aminolysis, hydrolysis, reduction, debenzylation,
SR and addition of the Boc group. The stereochemistry at the C-6
COgEt Ra\l positions of 14, 19, and 24 generated by hydrogenation was
COmEt identified astrans geometry by X-ray crystallography as well as

by 'H NMR analysis’-8

(—)-Sparteine-mediated asymmetric lithiation HfBoc-N-(p-
methoxyphenyl)-2,3-substituted allylamines witBuLi at —78°C
followed by conjugate additions to ethiybans-p-bromocinnamate " R? Ay R
provides the highly diastereo- and enantioenriched enecarbamates 1" N o MeA/RNH, LAr HCI(aq) \_r?
1-3in the yields shown in Table 1. The absolute configuration of AP MBoc CH,Cl, Boe e, Q
3, determined by X-ray crystallography, indicates that the stereo- CoEt hH -

Scheme 3

(Ar'=p-Bromophenyl-)

chemical course of the conjugate addition is inversion of config- 1R, R%= CHy 12:R\R=CHy 91  13:RLR2=CHy 9206
Urationf‘ 2:R'=Ph,R%= CHs R=PhCH, R= PhCH,
3:R',R%= (CHy, 17: R'= Ph, R% CHj, 90(%) 18 : R'= Ph, R%= CHy, 93(%)
R= PhCH, R=PhCH,
Table 1. (—)-Sparteine-Mediated Asymmetric 22:R\,R%=(CHp, 76(%)  23:R'R*=(CHpp 73(%)

Lithiation—Substitution Sequences R= (S)-()-PaMeCH R= (S)-()-PiveCH

Ha
Pd(OH,
R2 N BT\Q\L R? - E,, ); EtOH
H aney-Ni
R1\/H ) ! L Rl A\ Y
~,

n-Buli/L* COoEt Ar \ ) )
s,
N, NI Ph R 1.Hy Ph R Ph R
Ar” “Boc to;l;?,ge -78°%C Ar Boc N > Pd(OH), N 2 N 2
h “Inversion” R R R
(Ar = p-Methoxyphenyl-) CO,Et EtOH LAH
L*: (-)-sparteine (Ar' = p-Bromophenyl-) 2. (Boc),0 THF
1-3 N CH,CI N o N
) Boc 272 R R
R! R2 product yield (%) dra er 16 R', R%= CHg, 92(%) 15:R', R% CHa, 98(%) 14:R' R% CHg, 99(%)
R= PhCH, R=PhCH,  dr=96:4
CHs CHs (Z,S,B-1 92 95:5 >05:5 21:R'= Ph, R%= CHj, 95(%) 20: R'= Ph, R%= CHj, 98(%) 19 : R'= Ph, R?= CHa, 93(%)
R= PhCH R= PhCH dr=982
- . > . 2 2
Ph Ch (Z2SB2 86 937 97:3 26:R' R%= (CHy),  94(%) 25:R' R%= (CHy),  96(%) 24:R' R%= (CHp),,  99(%)
(CH2)2_ (CHZ)Z_ (Z,S, F’-3 75 96:4 990:% R= (S)-(-)-PhMeCH dr=99-1

R= (S)-(-)-PhMeCH

aDiastereomeric ratios (dr) were determined By NMR analysis.

b Enantiomeric ratios (er) were assessed to>#5:5 and>97:3 after Enolization and substitution of the lacta®9 provides a route
aminolysis of1 and 2 with (S)-(—)-a-methylbenzylamine, respectively. to 3,4,5,6-substituted azepanes, as shown in Schémennolysis
¢ The enantiomeric ratio @ was determined by CSFHPLC analysis. of 1 with p-anisidine to27 followed by hydrolysis and hydrogena-
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Scheme 4. Asymmetric Synthesis of 3,4,5,6-Substituted
Azepanes

and/or further substitutions at positions adjacent to nitrogen in the
intact ring are available for further development.
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tion provided29.2 Substitutions 029 by selected electrophiles using
LDA as the base providedR(S,R,$30—33and §,S,R, 534 in good
yields with high diastereoselectivities (Table 2). In all cases, the
C-3 and C-4 stereochemistry is assignedtrass by 'H NMR
analysis® Dearylation 0f31 by CAN®¢ proceeds smoothly to give
(R,S,R,$35 in good yield with diastereomeric and enantiomeric
purities greater than 98:2.

Table 2. Substitutions of 29

Ph CH;

S Rals]
D‘C"b LDA Electrophile R"DACHS
J Er ;’;)I; -78°Ctort J Er
(Ar=p-Methoxyphenyl-) 30~34
29
electrophile product yield (%) dr
CHal (RSR9-30 96 98:2
p-BrPhCHBr (RSR9-31 94 98:2
CH,=CHCH,Br (RSR9-32 73 99:1
PhOCEO)CI (RSR9-33 71 99:1
p-BrPhCEO0)CI (SSR9-34 82 95:5

To provide a route to the enantiomeric azepanes, we have taken
advantage of the lithiationstannylation-lithiation sequence, which
provides the epimeribl-Boc-substituted allyllithium intermediafe.
The sequence leading t&RQ-1 is shown in Scheme ¥. The
enantiomeric ratio ofR,9-1 was assessed to be 99:1 by determi-
nation of the diastereomeric ratio d®,S,%4 after aminolysis of
(R,9-1 with (9-(—)-a-methylbenzylaminé!! Use of the sequences
in Schemes 3 and 4 withR(S-1 would provide the enantiomeric
azepanes.

Scheme 5. Enantioselective Synthesis of Enantiomer (R,S)-1
1.n-Buli /L*
CHj CHz 2. Ar |
1.n-BuLi /L*
HaCJ\ 2. PhSnCl Ao N COzE
- . H . _
PLN Toluene Ph3Sn  NJ MTBE
Ar Boc _78%C Boc 78%C
P xyphenyl-) "l (R-36 "Inversion" COgEt
L = (-)-Sparteine 75(%), er = >99:1 (Ar=p-Bromophenyl-)

73(%), dr = 93:7

In summary, enantioselective synthesis of both enantiomers 4,5,6-

and 3,4,5,6-substituted azepanes can be achieved from the highly

diastereoenriched and enantioenriched enecarbarhategener-
ated by ()-sparteine-mediated asymmetric deprotonative lithia-
tions—conjugate additions ofN-Boc-N-(p-methoxyphenyl)-2,3-
substituted allylamines. Opening the ring of the lactam intermediates
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